

PLANO DE ENSINO DE DISCIPLINA

Campus: Luiz Meneghel de Bandeirantes		
Centro: Ciências Tecnológicas		
Curso: Sistemas de Informação	Modalidade: Bacharelado/Licenciatura	

Disciplina: 640 - Engenharia de Software I				
Código: OBT.0418	Série: 2ª	Turno: Noturno		
Carga Horária Semanal: 2		Carga Horária Total: 60		
		Teórica: 60	Prática: 0	
(X) Obrigatória () Optativa				
Números de Alunos por Turma: 40				
Docente Responsável: Maurício Massaru Arimoto				

I - EMENTA

Introdução à Engenharia de Software. Modelos de processos de software. Fases do desenvolvimento de software. Engenharia de requisitos. Introdução ao gerenciamento de projetos. Modelos de sistema.

II - CONTEÚDO PROGRAMÁTICO

- 1. Introdução à Engenharia de Software
- 2. Processo de software
- 2.1 Fases fundamentais do processo de software
- 3. Modelos de processo de software
- 3.1 Modelo cascata
- 3.2 Modelo de prototipação
- 3.3 Modelo incremental
- 3.4 Modelo em espiral
- 3.5 Outros modelos de processo
- 4. Engenharia de requisitos
- 4.1 Fundamentos de requisitos de software
- 4.2 Processo de engenharia de requisitos
- 4.2.1 Elicitação e análise de requisitos
- 4.2.2 Especificação de requisitos
- 4.2.3 Validação de requisitos
- 4.2.4 Gerência de requisitos
- 5. Modelagem de sistemas
- 5.1 Introdução à modelagem Orientada a Objetos
- 6. Metodologias ágeis
- 6.1. Fundamentos dos métodos ágeis
- 6.2 Scrum
- 6.3 eXtreme Programming (XP)
- 6.4 Outros métodos ágeis
- 7. Gerenciamento de projetos
- 7.1 Gerenciamento de projetos ágil versus tradicional

III - METODOLOGIA

A metodologia engloba:

- Aulas Teóricas Expositivas
- Aulas Práticas em Laboratório

- Seminários e Debates
- Trabalhos em Grupo
- Trabalhos Individuais
- Poderão ser oferecidos 20% do conteúdo em ambiente de ensino a distância

IV - CRITÉRIOS DE AVALIAÇÃO DE APRENDIZAGEM

As notas serão compostas por 70% da media das notas das provas mais 30% de trabalhos/seminários.

Etapa I:

- 2 Provas
- 1 Trabalho ou seminário

Etapa II:

- 2 Provas
- 1 Trabalho ou seminário

Assim, a média final da disciplina corresponde a:

Média final = (Média Etapa I + Média Etapa II) /2

V - LIVRO TEXTO

Booch, G.; Rumbaugh, M. Jacobson, I. UML: Guia do usuário. 2 ed. Rio de Janeiro: Elsevier, 2005.

Sommerville, I. Engenharia de Software. 6 ed. Addison Wesley, 2003.

Wazlawick, R. S. Engenharia de Software: conceitos e práticas, São Paulo: Elsevier, 2013.

VI - LEITURA COMPLEMENTAR

Cohn, M. Desenvolvimento de Software com Scrum. Aplicando Métodos Ágeis com Sucesso, 1 ed., São Paulo: Bookman, 2011.

Pressman, R. S. Engenharia de Software. 2 ed. McGraw-Hill, 2002.

Schwaber, K.; Beedle, M. Agile Software Development with Scrum. 1 ed. Prentice-Hall, 2002.

Teles, V. M. Extreme programming: aprenda como encantar seus usuários desenvolvendo software com agilidade e qualidade. 1 edição. São Paulo: Novatec, 2004.

Bandeirantes, 21 de fevereiro de 2019.

Aprovado pelo Co	olegiado do Curso no dia	de	de
_	Coordenador de C	olegiado	
Homologado pelo (Conselho de Centro no dia	de	de
_	Diretor de Ce	ntro	